从零开始学Python
面向对象高级编程
使用slots
正常情况下,当我们定义了一个class,创建了一个class的实例后,我们可以给该实例绑定任何属性和方法,这就是动态语言的灵活性。先定义class:
1 | class Student(object): |
然后,尝试给实例绑定一个属性:1
2
3
4>>> s = Student()
>>> s.name = 'Michael' # 动态给实例绑定一个属性
>>> print(s.name)
Michael
还可以尝试给实例绑定一个方法:1
2
3
4
5
6
7
8>>> def set_age(self, age): # 定义一个函数作为实例方法
... self.age = age
...
>>> from types import MethodType
>>> s.set_age = MethodType(set_age, s) # 给实例绑定一个方法
>>> s.set_age(25) # 调用实例方法
>>> s.age # 测试结果
25
但是,给一个实例绑定的方法,对另一个实例是不起作用的:1
2
3
4
5>>> s2 = Student() # 创建新的实例
>>> s2.set_age(25) # 尝试调用方法
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'Student' object has no attribute 'set_age'
为了给所有实例都绑定方法,可以给class绑定方法:1
2
3
4>>> def set_score(self, score):
... self.score = score
...
>>> Student.set_score = set_score
给class绑定方法后,所有实例均可调用:1
2
3
4
5
6>>> s.set_score(100)
>>> s.score
100
>>> s2.set_score(99)
>>> s2.score
99
通常情况下,上面的set_score方法可以直接定义在class中,但动态绑定允许我们在程序运行的过程中动态给class加上功能,这在静态语言中很难实现。
使用slots
但是,如果我们想要限制实例的属性怎么办?比如,只允许对Student
实例添加name和age属性。
为了达到限制的目的,Python允许在定义class的时候,定义一个特殊的__slots__
变量,来限制该class实例能添加的属性:1
2class Student(object):
__slots__ = ('name', 'age') # 用tuple定义允许绑定的属性名称
然后,我们试试:1
2
3
4
5
6
7>>> s = Student() # 创建新的实例
>>> s.name = 'Michael' # 绑定属性'name'
>>> s.age = 25 # 绑定属性'age'
>>> s.score = 99 # 绑定属性'score'
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'Student' object has no attribute 'score'
由于'score'
没有被放到__slots__
中,所以不能绑定score
属性,试图绑定score
将得到AttributeError
的错误。
使用__slots__
要注意,__slots__
定义的属性仅对当前类实例起作用,对继承的子类是不起作用的:1
2
3
4
5>>> class GraduateStudent(Student):
... pass
...
>>> g = GraduateStudent()
>>> g.score = 9999
除非在子类中也定义__slots__
,这样,子类实例允许定义的属性就是自身的__slots__
加上父类的__slots__
。
使用@property
在绑定属性时,如果我们直接把属性暴露出去,虽然写起来很简单,但是,没办法检查参数,导致可以把成绩随便改:1
2s = Student()
s.score = 9999
这显然不合逻辑。为了限制score
的范围,可以通过一个set_score()
方法来设置成绩,再通过一个get_score()
来获取成绩,这样,在set_score()
方法里,就可以检查参数:1
2
3
4
5
6
7
8
9
10
11class Student(object):
def get_score(self):
return self._score
def set_score(self, value):
if not isinstance(value, int):
raise ValueError('score must be an integer!')
if value < 0 or value > 100:
raise ValueError('score must between 0 ~ 100!')
self._score = value
现在,对任意的Student实例进行操作,就不能随心所欲地设置score
了:1
2
3
4
5
6
7
8>>> s = Student()
>>> s.set_score(60) # ok!
>>> s.get_score()
60
>>> s.set_score(9999)
Traceback (most recent call last):
...
ValueError: score must between 0 ~ 100!
但是,上面的调用方法又略显复杂,没有直接用属性这么直接简单。
有没有既能检查参数,又可以用类似属性这样简单的方式来访问类的变量呢?对于追求完美的Python程序员来说,这是必须要做到的!
还记得装饰器(decorator)可以给函数动态加上功能吗?对于类的方法,装饰器一样起作用。Python内置的@property装饰器就是负责把一个方法变成属性调用的:1
2
3
4
5
6
7
8
9
10
11
12
13class Student(object):
@property
def score(self):
return self._score
@score.setter
def score(self, value):
if not isinstance(value, int):
raise ValueError('score must be an integer!')
if value < 0 or value > 100:
raise ValueError('score must between 0 ~ 100!')
self._score = value
@property
的实现比较复杂,我们先考察如何使用。把一个getter
方法变成属性,只需要加上@property
就可以了,此时,@property
本身又创建了另一个装饰器@score.setter
,负责把一个setter
方法变成属性赋值,于是,我们就拥有一个可控的属性操作:1
2
3
4
5
6
7
8>>> s = Student()
>>> s.score = 60 # OK,实际转化为s.set_score(60)
>>> s.score # OK,实际转化为s.get_score()
60
>>> s.score = 9999
Traceback (most recent call last):
...
ValueError: score must between 0 ~ 100!
但是,上面的调用方法又略显复杂,没有直接用属性这么直接简单。
有没有既能检查参数,又可以用类似属性这样简单的方式来访问类的变量呢?对于追求完美的Python程序员来说,这是必须要做到的!
还记得装饰器(decorator)可以给函数动态加上功能吗?对于类的方法,装饰器一样起作用。Python内置的@property
装饰器就是负责把一个方法变成属性调用的:1
2
3
4
5
6
7
8
9
10
11
12
13class Student(object):
def score(self):
return self._score
def score(self, value):
if not isinstance(value, int):
raise ValueError('score must be an integer!')
if value < 0 or value > 100:
raise ValueError('score must between 0 ~ 100!')
self._score = value
@property
的实现比较复杂,我们先考察如何使用。把一个getter
方法变成属性,只需要加上@property
就可以了,此时,@property
本身又创建了另一个装饰器@score.setter
,负责把一个setter
方法变成属性赋值,于是,我们就拥有一个可控的属性操作:1
2
3
4
5
6
7
8>>> s = Student()
>>> s.score = 60 # OK,实际转化为s.set_score(60)
>>> s.score # OK,实际转化为s.get_score()
60
>>> s.score = 9999
Traceback (most recent call last):
...
ValueError: score must between 0 ~ 100!
注意到这个神奇的@property
,我们在对实例属性操作的时候,就知道该属性很可能不是直接暴露的,而是通过getter
和setter
方法来实现的。
还可以定义只读属性,只定义getter
方法,不定义setter
方法就是一个只读属性:1
2
3
4
5
6
7
8
9
10
11
12
13class Student(object):
def birth(self):
return self._birth
def birth(self, value):
self._birth = value
def age(self):
return 2015 - self._birth
上面的birth
是可读写属性,而age
就是一个只读属性,因为age
可以根据birth
和当前时间计算出来。
@property
广泛应用在类的定义中,可以让调用者写出简短的代码,同时保证对参数进行必要的检查,这样,程序运行时就减少了出错的可能性。
多重继承
继承是面向对象编程的一个重要的方式,因为通过继承,子类就可以扩展父类的功能。
1 | class Animal(object): |
多重继承的示例:
现在,我们要给动物再加上Runnable
和Flyable
的功能,只需要先定义好Runnable和Flyable的类:1
2
3
4
5
6
7class Runnable(object):
def run(self):
print('Running...')
class Flyable(object):
def fly(self):
print('Flying...')
对于需要Runnable
功能的动物,就多继承一个Runnable
,例如Dog
:1
2class Dog(Mammal, Runnable):
pass
对于需要Flyable
功能的动物,就多继承一个Flyable
,例如Bat
:1
2class Bat(Mammal, Flyable):
pass
通过多重继承,一个子类就可以同时获得多个父类的所有功能。
MixIn
在设计类的继承关系时,通常,主线都是单一继承下来的,例如,Ostrich
继承自Bird
。但是,如果需要“混入”额外的功能,通过多重继承就可以实现,比如,让Ostrich
除了继承自Bird
外,再同时继承Runnable
。这种设计通常称之为MixIn。
为了更好地看出继承关系,我们把Runnable
和Flyable
改为RunnableMixIn
和FlyableMixIn
。类似的,你还可以定义出肉食动物CarnivorousMixIn
和植食动物HerbivoresMixIn
,让某个动物同时拥有好几个MixIn
:1
2class Dog(Mammal, RunnableMixIn, CarnivorousMixIn):
pass
MixIn的目的就是给一个类增加多个功能,这样,在设计类的时候,我们优先考虑通过多重继承来组合多个MixIn的功能,而不是设计多层次的复杂的继承关系。
Python自带的很多库也使用了MixIn。举个例子,Python自带了TCPServer
和UDPServer
这两类网络服务,而要同时服务多个用户就必须使用多进程或多线程模型,这两种模型由ForkingMixIn
和ThreadingMixIn
提供。通过组合,我们就可以创造出合适的服务来。
比如,编写一个多进程模式的TCP服务,定义如下:1
2class MyTCPServer(TCPServer, ForkingMixIn):
pass
编写一个多线程模式的UDP服务,定义如下:1
2class MyUDPServer(UDPServer, ThreadingMixIn):
pass
如果你打算搞一个更先进的协程模型,可以编写一个CoroutineMixIn
:1
2class MyTCPServer(TCPServer, CoroutineMixIn):
pass
这样一来,我们不需要复杂而庞大的继承链,只要选择组合不同的类的功能,就可以快速构造出所需的子类。
由于Python允许使用多重继承,因此,MixIn就是一种常见的设计。
只允许单一继承的语言(如Java)不能使用MixIn的设计。
定制类
看到类似__slots__
这种形如__xxx__
的变量或者函数名就要注意,这些在Python中是有特殊用途的。
__slots__
我们已经知道怎么用了,__len__()
方法我们也知道是为了能让class作用于len()
函数。
除此之外,Python的class中还有许多这样有特殊用途的函数,可以帮助我们定制类。
str
我们先定义一个Student类,打印一个实例:
1 | >>> class Student(object): |
打印出一堆<__main__.student object="" at="" 0x109afb190="">,不好看。
怎么才能打印得好看呢?只需要定义好__str__()
方法,返回一个好看的字符串就可以了:1
2
3
4
5
6
7
8>>> class Student(object):
... def __init__(self, name):
... self.name = name
... def __str__(self):
... return 'Student object (name: %s)' % self.name
...
>>> print(Student('Michael'))
Student object (name: Michael)
这样打印出来的实例,不但好看,而且容易看出实例内部重要的数据。
但是细心的朋友会发现直接敲变量不用print
,打印出来的实例还是不好看:1
2
3>>> s = Student('Michael')
>>> s
<__main__.Student object at 0x109afb310>
这是因为直接显示变量调用的不是__str__()
,而是__repr__()
,两者的区别是__str__()
返回用户看到的字符串,而__repr__()
返回程序开发者看到的字符串,也就是说,__repr__()
是为调试服务的。
解决办法是再定义一个__repr__()
。但是通常__str__()
和__repr__()
代码都是一样的,所以,有个偷懒的写法:
1 | class Student(object): |
iter
如果一个类想被用于for ... in
循环,类似list
或tuple
那样,就必须实现一个__iter__()
方法,该方法返回一个迭代对象,然后,Python的for循环就会不断调用该迭代对象的__next__()
方法拿到循环的下一个值,直到遇到StopIteration
错误时退出循环。
我们以斐波那契数列为例,写一个Fib类,可以作用于for循环:1
2
3
4
5
6
7
8
9
10
11
12class Fib(object):
def __init__(self):
self.a, self.b = 0, 1 # 初始化两个计数器a,b
def __iter__(self):
return self # 实例本身就是迭代对象,故返回自己
def __next__(self):
self.a, self.b = self.b, self.a + self.b # 计算下一个值
if self.a > 100000: # 退出循环的条件
raise StopIteration();
return self.a # 返回下一个值
现在,试试把Fib实例作用于for循环:1
2
3
4
5
6
7
8
9
10
11>>> for n in Fib():
... print(n)
...
1
1
2
3
5
...
46368
75025
getitem
Fib实例虽然能作用于for循环,看起来和list有点像,但是,把它当成list来使用还是不行,比如,取第5个元素:1
2
3
4>>> Fib()[5]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: 'Fib' object does not support indexing
要表现得像list那样按照下标取出元素,需要实现1
2
3
4
5
6
7```
class Fib(object):
def __getitem__(self, n):
a, b = 1, 1
for x in range(n):
a, b = b, a + b
return a
现在,就可以按下标访问数列的任意一项了:1
2
3
4
5
6
7
8
9
10
11
12
13>>> f = Fib()
>>> f[0]
1
>>> f[1]
1
>>> f[2]
2
>>> f[3]
3
>>> f[10]
89
>>> f[100]
573147844013817084101
但是list有个神奇的切片方法:1
2>>> list(range(100))[5:10]
[5, 6, 7, 8, 9]
对于Fib却报错。原因是__getitem__()
传入的参数可能是一个int
,也可能是一个切片对象slice
,所以要做判断:1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19class Fib(object):
def __getitem__(self, n):
if isinstance(n, int): # n是索引
a, b = 1, 1
for x in range(n):
a, b = b, a + b
return a
if isinstance(n, slice): # n是切片
start = n.start
stop = n.stop
if start is None:
start = 0
a, b = 1, 1
L = []
for x in range(stop):
if x >= start:
L.append(a)
a, b = b, a + b
return L
现在试试Fib的切片:1
2
3
4
5>>> f = Fib()
>>> f[0:5]
[1, 1, 2, 3, 5]
>>> f[:10]
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55]
但是没有对step参数作处理:1
2>>> f[:10:2]
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]
也没有对负数作处理,所以,要正确实现一个__getitem__()
还是有很多工作要做的。
此外,如果把对象看成dict,__getitem__()
的参数也可能是一个可以作key
的object
,例如str
。
与之对应的是__setitem__()
方法,把对象视作list
或dict
来对集合赋值。最后,还有一个__delitem__()
方法,用于删除某个元素。
总之,通过上面的方法,我们自己定义的类表现得和Python自带的list
、tuple
、dict
没什么区别,这完全归功于动态语言的“鸭子类型”,不需要强制继承某个接口。
getattr
正常情况下,当我们调用类的方法或属性时,如果不存在,就会报错。比如定义Student类:1
2
3
4class Student(object):
def __init__(self):
self.name = 'Michael'
调用name
属性,没问题,但是,调用不存在的score
属性,就有问题了:1
2
3
4
5
6
7>>> s = Student()
>>> print(s.name)
Michael
>>> print(s.score)
Traceback (most recent call last):
...
AttributeError: 'Student' object has no attribute 'score'
错误信息很清楚地告诉我们,没有找到score
这个attribute
。
要避免这个错误,除了可以加上一个score
属性外,Python还有另一个机制,那就是写一个__getattr__()
方法,动态返回一个属性。修改如下:1
2
3
4
5
6
7
8class Student(object):
def __init__(self):
self.name = 'Michael'
def __getattr__(self, attr):
if attr=='score':
return 99
当调用不存在的属性时,比如score
,Python解释器会试图调用__getattr__(self, 'score')
来尝试获得属性,这样,我们就有机会返回score
的值1
2
3
4
5>>> s = Student()
>>> s.name
'Michael'
>>> s.score
99
返回函数也是完全可以的:
1 | class Student(object): |
只是调用方式要变为:1
2>>> s.age()
25
注意,只有在没有找到属性的情况下,才调用getattr,已有的属性,比如name,不会在getattr中查找。
此外,注意到任意调用如s.abc都会返回None,这是因为我们定义的getattr默认返回就是None。要让class只响应特定的几个属性,我们就要按照约定,抛出AttributeError的错误:1
2
3
4
5
6class Student(object):
def __getattr__(self, attr):
if attr=='age':
return lambda: 25
raise AttributeError('\'Student\' object has no attribute \'%s\'' % attr)
这实际上可以把一个类的所有属性和方法调用全部动态化处理了,不需要任何特殊手段。
这种完全动态调用的特性有什么实际作用呢?作用就是,可以针对完全动态的情况作调用。
举个例子:
现在很多网站都搞REST API,比如新浪微博、豆瓣啥的,调用API的URL类似:
http://api.server/user/friends
http://api.server/user/timeline/list
如果要写SDK,给每个URL对应的API都写一个方法,那得累死,而且,API一旦改动,SDK也要改。
利用完全动态的__getattr__
,我们可以写出一个链式调用:1
2
3
4
5
6
7
8
9
10
11
12class Chain(object):
def __init__(self, path=''):
self._path = path
def __getattr__(self, path):
return Chain('%s/%s' % (self._path, path))
def __str__(self):
return self._path
__repr__ = __str__
试试:1
2>>> Chain().status.user.timeline.list
'/status/user/timeline/list'
这样,无论API怎么变,SDK都可以根据URL实现完全动态的调用,而且,不随API的增加而改变!
还有些REST API会把参数放到URL中,比如GitHub的API:
1 | GET /users/:user/repos |
调用时,需要把:user
替换为实际用户名。如果我们能写出这样的链式调用:1
Chain().users('michael').repos
call
一个对象实例可以有自己的属性和方法,当我们调用实例方法时,我们用instance.method()
来调用。能不能直接在实例本身上调用呢?在Python中,答案是肯定的。
任何类,只需要定义一个__call__()
方法,就可以直接对实例进行调用。请看示例:1
2
3
4
5
6class Student(object):
def __init__(self, name):
self.name = name
def __call__(self):
print('My name is %s.' % self.name)
调用方式如下:1
2
3>>> s = Student('Michael')
>>> s() # self参数不要传入
My name is Michael.
__call__()
还可以定义参数。对实例进行直接调用就好比对一个函数进行调用一样,所以你完全可以把对象看成函数,把函数看成对象,因为这两者之间本来就没啥根本的区别。
如果你把对象看成函数,那么函数本身其实也可以在运行期动态创建出来,因为类的实例都是运行期创建出来的,这么一来,我们就模糊了对象和函数的界限。
那么,怎么判断一个变量是对象还是函数呢?其实,更多的时候,我们需要判断一个对象是否能被调用,能被调用的对象就是一个Callable
对象,比如函数和我们上面定义的带有__call__()
的类实例:1
2
3
4
5
6
7
8
9
10>>> callable(Student())
True
>>> callable(max)
True
>>> callable([1, 2, 3])
False
>>> callable(None)
False
>>> callable('str')
False
通过callable()
函数,我们就可以判断一个对象是否是“可调用”对象。
使用枚举类
当我们需要定义常量时,一个办法是用大写变量通过整数来定义,例如月份:1
2
3
4
5
6JAN = 1
FEB = 2
MAR = 3
...
NOV = 11
DEC = 12
好处是简单,缺点是类型是int
,并且仍然是变量。
更好的方法是为这样的枚举类型定义一个class
类型,然后,每个常量都是class
的一个唯一实例。Python提供了Enum
类来实现这个功能:1
2
3from enum import Enum
Month = Enum('Month', ('Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'))
这样我们就获得了Month
类型的枚举类,可以直接使用Month.Jan
来引用一个常量,或者枚举它的所有成员:1
2for name, member in Month.__members__.items():
print(name, '=>', member, ',', member.value)
value
属性则是自动赋给成员的int
常量,默认从1
开始计数。
如果需要更精确地控制枚举类型,可以从Enum
派生出自定义类:1
2
3
4
5
6
7
8
9
10
11from enum import Enum, unique
@unique
class Weekday(Enum):
Sun = 0 # Sun的value被设定为0
Mon = 1
Tue = 2
Wed = 3
Thu = 4
Fri = 5
Sat = 6
@unique
装饰器可以帮助我们检查保证没有重复值。
访问这些枚举类型可以有若干种方法:1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31>>> day1 = Weekday.Mon
>>> print(day1)
Weekday.Mon
>>> print(Weekday.Tue)
Weekday.Tue
>>> print(Weekday['Tue'])
Weekday.Tue
>>> print(Weekday.Tue.value)
2
>>> print(day1 == Weekday.Mon)
True
>>> print(day1 == Weekday.Tue)
False
>>> print(Weekday(1))
Weekday.Mon
>>> print(day1 == Weekday(1))
True
>>> Weekday(7)
Traceback (most recent call last):
...
ValueError: 7 is not a valid Weekday
>>> for name, member in Weekday.__members__.items():
... print(name, '=>', member)
...
Sun => Weekday.Sun
Mon => Weekday.Mon
Tue => Weekday.Tue
Wed => Weekday.Wed
Thu => Weekday.Thu
Fri => Weekday.Fri
Sat => Weekday.Sat
可见,既可以用成员名称引用枚举常量,又可以直接根据value的值获得枚举常量。
使用元类
type()
动态语言和静态语言最大的不同,就是函数和类的定义,不是编译时定义的,而是运行时动态创建的。
比方说我们要定义一个Hello
的class,就写一个hello.py模块:1
2
3class Hello(object):
def hello(self, name='world'):
print('Hello, %s.' % name)
当Python解释器载入hello
模块时,就会依次执行该模块的所有语句,执行结果就是动态创建出一个Hello
的class对象,测试如下:1
2
3
4
5
6
7
8>>> from hello import Hello
>>> h = Hello()
>>> h.hello()
Hello, world.
>>> print(type(Hello))
<class 'type'>
>>> print(type(h))
<class 'hello.Hello'>
type()
函数可以查看一个类型或变量的类型,Hello
是一个class,它的类型就是type
,而h是一个实例,它的类型就是class Hello
。
我们说class
的定义是运行时动态创建的,而创建class
的方法就是使用type()
函数。
type()
函数既可以返回一个对象的类型,又可以创建出新的类型,比如,我们可以通过type()
函数创建出Hello
类,而无需通过class Hello(object)…的定义:1
2
3
4
5
6
7
8
9
10
11>>> def fn(self, name='world'): # 先定义函数
... print('Hello, %s.' % name)
...
>>> Hello = type('Hello', (object,), dict(hello=fn)) # 创建Hello class
>>> h = Hello()
>>> h.hello()
Hello, world.
>>> print(type(Hello))
<class 'type'>
>>> print(type(h))
<class '__main__.Hello'>
要创建一个class对象,type()函数依次传入3个参数:
1.class的名称;
2.继承的父类集合,注意Python支持多重继承,如果只有一个父类,别忘了tuple的单元素写法;
3.class的方法名称与函数绑定,这里我们把函数fn绑定到方法名hello上。
通过type()函数创建的类和直接写class是完全一样的,因为Python解释器遇到class定义时,仅仅是扫描一下class定义的语法,然后调用type()函数创建出class。
正常情况下,我们都用class Xxx…来定义类,但是,type()函数也允许我们动态创建出类来,也就是说,动态语言本身支持运行期动态创建类,这和静态语言有非常大的不同,要在静态语言运行期创建类,必须构造源代码字符串再调用编译器,或者借助一些工具生成字节码实现,本质上都是动态编译,会非常复杂。
metaclass
除了使用type()
动态创建类以外,要控制类的创建行为,还可以使用metaclass
。
metaclass
,直译为元类,简单的解释就是:
当我们定义了类以后,就可以根据这个类创建出实例,所以:先定义类,然后创建实例。
但是如果我们想创建出类呢?那就必须根据metaclass
创建出类,所以:先定义metaclass
,然后创建类。
连接起来就是:先定义metaclass
,就可以创建类,最后创建实例。
所以,metaclass
允许你创建类或者修改类。换句话说,你可以把类看成是metaclass
创建出来的“实例”。
metaclass
是Python面向对象里最难理解,也是最难使用的魔术代码。正常情况下,你不会碰到需要使用metaclass
的情况,所以,以下内容看不懂也没关系,因为基本上你不会用到。
我们先看一个简单的例子,这个metaclass
可以给我们自定义的MyList
增加一个add
方法:
定义ListMetaclass
,按照默认习惯,metaclass
的类名总是以Metaclass
结尾,以便清楚地表示这是一个metaclass
:1
2
3
4
5# metaclass是类的模板,所以必须从`type`类型派生:
class ListMetaclass(type):
def __new__(cls, name, bases, attrs):
attrs['add'] = lambda self, value: self.append(value)
return type.__new__(cls, name, bases, attrs)
有了ListMetaclass,我们在定义类的时候还要指示使用ListMetaclass来定制类,传入关键字参数metaclass:1
2class MyList(list, metaclass=ListMetaclass):
pass
当我们传入关键字参数metaclass
时,魔术就生效了,它指示Python解释器在创建MyList
时,要通过ListMetaclass.__new__()
来创建,在此,我们可以修改类的定义,比如,加上新的方法,然后,返回修改后的定义。
__new__()
方法接收到的参数依次是:
当前准备创建的类的对象;
类的名字;
类继承的父类集合;
类的方法集合。
测试一下MyList
是否可以调用add()
方法:1
2
3
4>>> L = MyList()
>>> L.add(1)
>> L
[1]
而普通的list
没有add()
方法:1
2
3
4
5>>> L2 = list()
>>> L2.add(1)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'list' object has no attribute 'add'
动态修改有什么意义?直接在MyList定义中写上add()
方法不是更简单吗?正常情况下,确实应该直接写,通过metaclass
修改纯属变态。
但是,总会遇到需要通过metaclass
修改类定义的。ORM就是一个典型的例子。
ORM全称“Object Relational Mapping”,即对象-关系映射,就是把关系数据库的一行映射为一个对象,也就是一个类对应一个表,这样,写代码更简单,不用直接操作SQL语句。
要编写一个ORM框架,所有的类都只能动态定义,因为只有使用者才能根据表的结构定义出对应的类来。
让我们来尝试编写一个ORM框架。
编写底层模块的第一步,就是先把调用接口写出来。比如,使用者如果使用这个ORM框架,想定义一个User类来操作对应的数据库表User,我们期待他写出这样的代码:1
2
3
4
5
6
7
8
9
10class User(Model):
# 定义类的属性到列的映射:
id = IntegerField('id')
name = StringField('username')
email = StringField('email')
password = StringField('password')
# 创建一个实例:
u = User(id=12345, name='Michael', email='test@orm.org', password='my-pwd')
# 保存到数据库:
u.save()
其中,父类Model
和属性类型StringField
、IntegerField
是由ORM框架提供的,剩下的魔术方法比如save()
全部由metaclass
自动完成。虽然metaclass
的编写会比较复杂,但ORM的使用者用起来却异常简单。
现在,我们就按上面的接口来实现该ORM。
首先来定义Field类,它负责保存数据库表的字段名和字段类型:1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19class Field(object):
def __init__(self, name, column_type):
self.name = name
self.column_type = column_type
def __str__(self):
return '<%s:%s>' % (self.__class__.__name__, self.name)
在Field的基础上,进一步定义各种类型的Field,比如StringField,IntegerField等等:
class StringField(Field):
def __init__(self, name):
super(StringField, self).__init__(name, 'varchar(100)')
class IntegerField(Field):
def __init__(self, name):
super(IntegerField, self).__init__(name, 'bigint')
下一步,就是编写最复杂的ModelMetaclass了:1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16class ModelMetaclass(type):
def __new__(cls, name, bases, attrs):
if name=='Model':
return type.__new__(cls, name, bases, attrs)
print('Found model: %s' % name)
mappings = dict()
for k, v in attrs.items():
if isinstance(v, Field):
print('Found mapping: %s ==> %s' % (k, v))
mappings[k] = v
for k in mappings.keys():
attrs.pop(k)
attrs['__mappings__'] = mappings # 保存属性和列的映射关系
attrs['__table__'] = name # 假设表名和类名一致
return type.__new__(cls, name, bases, attrs)
以及基类Model:1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25class Model(dict, metaclass=ModelMetaclass):
def __init__(self, **kw):
super(Model, self).__init__(**kw)
def __getattr__(self, key):
try:
return self[key]
except KeyError:
raise AttributeError(r"'Model' object has no attribute '%s'" % key)
def __setattr__(self, key, value):
self[key] = value
def save(self):
fields = []
params = []
args = []
for k, v in self.__mappings__.items():
fields.append(v.name)
params.append('?')
args.append(getattr(self, k, None))
sql = 'insert into %s (%s) values (%s)' % (self.__table__, ','.join(fields), ','.join(params))
print('SQL: %s' % sql)
print('ARGS: %s' % str(args))
当用户定义一个class User(Model)
时,Python解释器首先在当前类User的定义中查找metaclass
,如果没有找到,就继续在父类Model中查找metaclass
,找到了,就使用Model中定义的metaclass
的ModelMetaclass
来创建User类,也就是说,metaclass
可以隐式地继承到子类,但子类自己却感觉不到。
在ModelMetaclass
中,一共做了几件事情:
排除掉对Model类的修改;
在当前类(比如User)中查找定义的类的所有属性,如果找到一个Field属性,就把它保存到一个mappings的dict中,同时从类属性中删除该Field属性,否则,容易造成运行时错误(实例的属性会遮盖类的同名属性);
把表名保存到table中,这里简化为表名默认为类名。
在Model类中,就可以定义各种操作数据库的方法,比如save()
,delete()
,find()
,update
等等。
我们实现了save()方法,把一个实例保存到数据库中。因为有表名,属性到字段的映射和属性值的集合,就可以构造出INSERT语句。
编写代码试试:1
2u = User(id=12345, name='Michael', email='test@orm.org', password='my-pwd')
u.save()
输出如下:1
2
3
4
5
6
7Found model: User
Found mapping: email ==> <StringField:email>
Found mapping: password ==> <StringField:password>
Found mapping: id ==> <IntegerField:uid>
Found mapping: name ==> <StringField:username>
SQL: insert into User (password,email,username,id) values (?,?,?,?)
ARGS: ['my-pwd', 'test@orm.org', 'Michael', 12345]
可以看到,save()
方法已经打印出了可执行的SQL语句,以及参数列表,只需要真正连接到数据库,执行该SQL语句,就可以完成真正的功能。
不到100行代码,我们就通过metaclass实现了一个精简的ORM框架。